
menten_gcn
Release 0.3.0

Menten AI, Inc.

Mar 11, 2021

CONTENTS

1 Contents 3
1.1 Overview . 3

1.1.1 Graph Layout . 3
1.1.2 Graph Tensors . 4
1.1.3 Usage . 5

1.2 Decorator Menu . 6
1.2.1 Geometry . 6
1.2.2 Sequence . 8
1.2.3 Rosetta . 8

1.3 Classes . 12
1.3.1 DataMaker . 13
1.3.2 Decorators . 16
1.3.3 Pose Wrappers . 29

1.4 Examples . 29
1.4.1 Hello World . 29
1.4.2 Simple Train . 30
1.4.3 Sparse Mode . 32
1.4.4 Custom Decorator . 34

1.5 Technical Overview . 37
1.5.1 Documentation . 37
1.5.2 Installation . 37
1.5.3 Development . 37

1.6 Troubleshooting . 37
1.6.1 Sparse Mode . 37
1.6.2 Versioning . 38

1.7 Authors . 38
1.8 Indices and tables . 38

Index 39

i

ii

menten_gcn, Release 0.3.0

At the command line:

pip install menten-gcn

CONTENTS 1

menten_gcn, Release 0.3.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Overview

The goal of Menten GCN is to create GCN tensors from protein models (poses). We are aligning with Spektral’s
vocabulary style when talking about GCNs and Rosetta’s vocabulary when talking about poses.

1.1.1 Graph Layout

Each node (vertex) in our graph represents a single residue position. Edges connect nodes that are close in 3D space.
Our goal in Menten GCN is to analyze small pockets of residues at a time, though the size of each pocket is entirely
up to the user and can encompass the entire protein if you wish.

We generate a graph by first declaring one or more “focus” residues. These residues will be at the center of our pocket.
Menten GCN will automatically select the residue positions closest in space to the focus residues and will use them to
build neighbor nodes. Menten GCN will also automatically add edges between any two nodes that are close in space.

3

menten_gcn, Release 0.3.0

1.1.2 Graph Tensors

We have 3 primary parameters in this system:

• “N” is maximum the number of nodes in any graph. This includes focus nodes and neighbor nodes

• “F” is the number of features per node

• “S” is the number of features per edge

These parameters are used to define 3 input tensors:

• Tensor “X” holds the node features and is of shape (N,F)

• Tensor “A” holds the adjacency matrix and is of shape (N,N)

• Tensor “E” holds the edge features and is of shape (N,N,S)

One nuance of the “E” tensor is that edges can have direction. Every pair of residues has room for two edge tensors
in our system. Some of our edge features are symmetric (like distance) so they will have the same value going in both
directions. Other edge tensors are asymmetric (like relative geometries) so they will have different values for each of
the two slots in “E”.

4 Chapter 1. Contents

menten_gcn, Release 0.3.0

1.1.3 Usage

1. Start by loading your pose in python using any of our supported packages.

• Just Rosetta and MDTraj right now. Get in touch if you want more!

2. Wrap your pose using the appropriate wrapper for your package.

• See Classes -> Pose Wrappers

3. Define a list of decorators to use to represent your pose.

• See Classes -> Decorators

• An example decorator would be PhiPsiRadians, which decorates each node with its Phi and Psi value

4. Use this list of decorators to build a DataMaker

5. The DataMaker will then take your wrapped pose, ask for the focus residues, and return the X, A, and E tensors

6. From here you have a few choices.

• You can train on these tensors directly

• You can utilize Spektral’s Dataset interface to make training easier with large amounts of data

• Or you can save these for later. Stick them on disk and come back to them when you’re ready to train

See the DataMaker class and examples for more details.

1.1. Overview 5

menten_gcn, Release 0.3.0

1.2 Decorator Menu

1.2.1 Geometry

class menten_gcn.decorators.CACA_dist(use_nm: bool = False)
Measures distance between the two C-Alpha atoms of each residue

• 0 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use
nanometers.

class menten_gcn.decorators.CBCB_dist(use_nm: bool = False)
Measures distance between the two C-Beta atoms of each residue. Note: We will calculate the “ideal ALA”
CB location even if this residue has a CB atom. This may sound silly but it is intended to prevents noise from
different native amino acid types.

• 0 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use
nanometers.

class menten_gcn.decorators.PhiPsiRadians(sincos: bool = False)
Returns the phi and psi values of each residue position.

• 2-4 Node Features

• 0 Edge Features

Parameters sincos (bool) – Return the sine and cosine of phi and psi instead of just the raw values.

class menten_gcn.decorators.ChiAngleDecorator(chi1: bool = True, chi2: bool = True,
chi3: bool = True, chi4: bool = True, sin-
cos: bool = True)

Returns the chi values of each residue position. Ranges from -pi to pi or -1 to 1 if sincos=True.

WARNING: This can behave inconsistantly for proton chis accross modeling frameworks. Rosetta adds hydro-
gens when they are absent from the input file but MDtraj does not. This results in Rosetta calculating a chi value
in some cases that MDtraj skips!

• 0-8 Node Features

• 0 Edge Features

Parameters

• chi1 (bool) – Include chi1’s value

• chi2 (bool) – Include chi2’s value

• chi3 (bool) – Include chi3’s value

• chi4 (bool) – Include chi4’s value

• sincos (bool) – Return the sine and cosine of chi instead of just the raw values

6 Chapter 1. Contents

menten_gcn, Release 0.3.0

class menten_gcn.decorators.trRosettaEdges(sincos: bool = False, use_nm: bool = False)
Use the residue pair geometries used in this paper: https://www.pnas.org/content/117/3/1496/tab-figures-data

• 0 Node Features

• 4-7 Edge Features

Parameters

• sincos (bool) – Return the sine and cosine of phi and psi instead of just the raw values.

• use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

Note: This default value does not match the default of other decorators. This is for the sake
of matching the trRosetta paper.

class menten_gcn.decorators.SimpleBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=False) and CBCB_dist

• 2 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

class menten_gcn.decorators.StandardBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=True) and trRosettaEdges(sincos=False)

• 4 Node Features

• 4 Edge Features

Parameters use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

class menten_gcn.decorators.AdvancedBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=True), CACA_dist, and trRosettaEdges(sincos=True)

• 4 Node Features

• 8 Edge Features

Parameters use_nm (bool) – If true, measure all distances in Angstroms. Otherwise use nanome-
ters.

1.2. Decorator Menu 7

https://www.pnas.org/content/117/3/1496/tab-figures-data

menten_gcn, Release 0.3.0

1.2.2 Sequence

class menten_gcn.decorators.Sequence
One-hot encode the canonical amino acid identity on each node.

• 20 Node Features

• 0 Edge Features

class menten_gcn.decorators.DesignableSequence
One-hot encode the canonical amino acid identity on each node, with a 21st value for residues that are not yet
assigned an amino acid identity.

Note: requires you to call WrappedPose.set_designable_resids first

• 21 Node Features

• 0 Edge Features

class menten_gcn.decorators.SequenceSeparation(ln: bool = True)
The sequence distance between the two residues (i.e., number of residues between these two residues in sequence
space, plus one). -1.0 if the two residues belong to different chains.

• 0 Node Features

• 1 Edge Feature

Parameters ln (bool) – Report the natural log of the distance instead of the raw count. Does not
apply to -1 values

class menten_gcn.decorators.SameChain
1 if the two residues are part of the same protein chain. Otherwise 0.

• 0 Node Features

• 1 Edge Feature

1.2.3 Rosetta

class menten_gcn.decorators.RosettaResidueSelectorDecorator(selector, description:
str)

Takes a user-provided residue selctor and labels each residue with a 1 or 0 accordingly.

• 1 Node Feature

• 0 Edge Features

Parameters

• selector (ResidueSelector) – This residue selector will be applied to the Rosetta pose

• description (str) – This is the string that will label this feature in the final summary. Not
technically required but highly recommended

Example:

import menten_gcn as mg
import menten_gcn.decorators as decs
import pyrosetta

pyrosetta.init()
(continues on next page)

8 Chapter 1. Contents

menten_gcn, Release 0.3.0

(continued from previous page)

buried = pyrosetta.rosetta.core.select.residue_selector.LayerSelector()
buried.set_layers(True, False, False)
buried_dec = decs.RosettaResidueSelectorDecorator(selector=buried, description='
→˓<Layer select_core="true" />')

data_maker = mg.DataMaker(decorators=[buried_dec], edge_distance_cutoff_A=10.0,
→˓ max_residues=30)
data_maker.summary()

Gives:

Summary:

2 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : 1.0 if the residue is selected by the residue selector, 0.0 otherwise. User
→˓defined definition of the residue selector and how to reproduce it: <Layer
→˓select_core="true" />

1 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise

Note that the additional features are due to the BareBonesDecorator, which is included by default

class menten_gcn.decorators.RosettaResidueSelectorFromXML(xml_str: str,
res_sele_name: str)

Takes a user-provided residue selctor via XML and labels each residue with a 1 or 0 accordingly.

• 1 Node Feature

• 0 Edge Features

Parameters

• xml_str (str) – XML snippet that defines the selector

• res_sele_name (str) – The name of the selector within the snippet

Example:

import menten_gcn as mg
import menten_gcn.decorators as decs
import pyrosetta

pyrosetta.init()
xml = '''
<RESIDUE_SELECTORS>
<Layer name="surface" select_surface="true" />
</RESIDUE_SELECTORS>
'''
surface_dec = decs.RosettaResidueSelectorFromXML(xml, "surface")

max_res=30
data_maker = mg.DataMaker(decorators=[surface_dec], edge_distance_cutoff_A=10.
→˓0, max_residues=max_res)
data_maker.summary()

Gives:

1.2. Decorator Menu 9

menten_gcn, Release 0.3.0

Summary:

2 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : 1.0 if the residue is selected by the residue selector, 0.0 otherwise. User
→˓defined definition of the residue selector and how to reproduce it: Took the
→˓residue selector named surface from this XML:
<RESIDUE_SELECTORS>
<Layer name="surface" select_surface="true" />
</RESIDUE_SELECTORS>

1 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise

Note that the additional features are due to the BareBonesDecorator, which is included by default

class menten_gcn.decorators.RosettaJumpDecorator(use_nm: bool = False, rottype: str =
'euler')

Measures the translational and rotational relationships between all residue pairs. This uses internal coordinate
frames so it is agnostic to the global coordinate system. You can move/rotate your protein around and these will
stay the same.

• 0 Node Features

• 6-12 Edge Features

Parameters

• use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use nanome-
ters.

• rottype (str) – How do you want to represent the rotational degrees of freedom? Options
are “euler” (default), “euler_sincos”, “matrix”, “quat”, “rotvec”, and “rotvec_sincos”.

class menten_gcn.decorators.RosettaHBondDecorator(sfxn=None, bb_only: bool = False)
Takes a user-provided residue selctor via XML and labels each residue with a 1 or 0 accordingly.

• 0 Node Features

• 1-5 Edge Features (depending on bb_only)

Parameters

• sfxn (ScoreFunction) – Score function used to calculate hbonds. We will use Rosetta’s
default if this is None

• bb_only (bool) – Only consider backbone-backbone hbonds. Reduces the number of fea-
tures from 5 down to 1

class menten_gcn.decorators.Rosetta_Ref2015_OneBodyEneriges(individual:
bool = False,
score_types=None)

Label each node with its Rosetta one-body energy

• 1 - 20-ish Node Features

• 0 Edge Features

Parameters

10 Chapter 1. Contents

menten_gcn, Release 0.3.0

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

class menten_gcn.decorators.Rosetta_Ref2015_TwoBodyEneriges(individual:
bool = False,
score_types=None)

Label each edge with its Rosetta two-body energy

• 0 Node Features

• 1 - 20-ish Edge Features

Parameters

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

class menten_gcn.decorators.Ref2015Decorator(individual: bool = False,
score_types=None)

Meta-decorator that combines Rosetta_Ref2015_OneBodyEneriges and Rosetta_Ref2015_TwoBodyEneriges

• 1 - 20-ish Node Features

• 1 - 20-ish Edge Features

Parameters

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

1.2. Decorator Menu 11

menten_gcn, Release 0.3.0

1.3 Classes

12 Chapter 1. Contents

menten_gcn, Release 0.3.0

1.3.1 DataMaker

The DataMaker is the main character of Menten GCN. It has the job of applying decorators to poses and organizing
them as tensors.

class menten_gcn.DataMaker(decorators: List[menten_gcn.decorators.base.Decorator],
edge_distance_cutoff_A: float, max_residues: int, exclude_bbdec:
bool = False, nbr_distance_cutoff_A: Optional[float] = None, dtype:
numpy.dtype = <class 'numpy.float32'>)

The DataMaker is the user’s interface for controlling the size and composition of their graph.

Parameters

• decorators (list) – List of decorators that you want to include

• edge_distance_cutoff_A (float) – An edge will be created between any two pairs of residues
if their C-alpha atoms are within this distance (measured in Angstroms)

• max_residues (int) – What is the maximum number of nodes a graph can have? This
includes focus and neighbor nodes. If the number of focus+neighbors exceeds this number,
we will leave out the neighbors that are farthest away in 3D space.

• exclude_bbdec (bool) – Every DataMaker has a standard “bare bones” decorator that is
prepended to the list of decorators you provide. Set this to false to remove it entirely.

• nbr_distance_cutoff_A (float) – A node will be included in the graph if it is within
this distance (Angstroms) of any focus node. A value of None will set this equal to
edge_distance_cutoff_A

• dtype (np.dtype) – What numpy data type should we use to represent your data?

summary()
Print a summary of the graph decorations to console. The goal of this summary is to describe every

1.3. Classes 13

menten_gcn, Release 0.3.0

feature with enough detail to be able to be reproduced externally. This will also print any relevant citation
information for individual decorators.

import menten_gcn as mg
import menten_gcn.decorators as decs

decorators=[decs.SimpleBBGeometry(), decs.Sequence()]
data_maker = mg.DataMaker(decorators=decorators, edge_distance_cutoff_A=10.0,
→˓ max_residues=15)
data_maker.summary()

Summary:

23 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : Phi of the given residue, measured in radians. Spans from -pi to pi
3 : Psi of the given residue, measured in radians. Spans from -pi to pi
4 : 1 if residue is A, 0 otherwise
5 : 1 if residue is C, 0 otherwise
6 : 1 if residue is D, 0 otherwise
7 : 1 if residue is E, 0 otherwise
8 : 1 if residue is F, 0 otherwise
9 : 1 if residue is G, 0 otherwise
10 : 1 if residue is H, 0 otherwise
11 : 1 if residue is I, 0 otherwise
12 : 1 if residue is K, 0 otherwise
13 : 1 if residue is L, 0 otherwise
14 : 1 if residue is M, 0 otherwise
15 : 1 if residue is N, 0 otherwise
16 : 1 if residue is P, 0 otherwise
17 : 1 if residue is Q, 0 otherwise
18 : 1 if residue is R, 0 otherwise
19 : 1 if residue is S, 0 otherwise
20 : 1 if residue is T, 0 otherwise
21 : 1 if residue is V, 0 otherwise
22 : 1 if residue is W, 0 otherwise
23 : 1 if residue is Y, 0 otherwise

2 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise
2 : Euclidean distance between the two CB atoms of each residue, measured in
→˓Angstroms. In the case of GLY, use an estimate of ALA's CB position

get_N_F_S()→ Tuple[int, int, int]

Returns

• N (int) – Maximum number of nodes in the graph

• F (int) – Number of features for each node

• S (int) – Number of features for each edge

generate_input_for_resid(wrapped_pose: menten_gcn.wrappers.WrappedPose,
resid: int, data_cache: Op-
tional[menten_gcn.data_management.DecoratorDataCache] =
None, sparse: bool = False, legal_nbrs: Optional[List[int]] =
None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
List[int]]

Only have 1 focus resid? Then this is sliiiiiiightly cleaner than generate_input(). It’s completely debatable

14 Chapter 1. Contents

menten_gcn, Release 0.3.0

if this is even worthwhile

Parameters

• wrapped_pose (WrappedPose) – Pose to generate data from

• focus_resid (int) – Which resid is the focus residue? We use Rosetta conventions here, so
the first residue is resid #1, second is #2, and so one. No skips.

• data_cache (DecoratorDataCache) – See make_data_cache for details. It is very impor-
tant that this cache was created from this pose

• legal_nbrs (list of ints) – Which resids are allowed to be neighbors? All resids are legal if
this is None

Returns

• X (ndarray) – Node Features

• A (ndarray) – Adjacency Matrix

• E (ndarray) – Edge Feature

• sparse (bool) – This setting will use sparse representations of A and E. X will still have
dimension (N,F) but A will now be a scipy.sparse_matrix and E will have dimension (M,S)
where M is the number of edges

• meta (list of int) – Metadata. At the moment this is just a list of resids in the same order
as they are listed in X, A, and E

generate_input(wrapped_pose: menten_gcn.wrappers.WrappedPose, focus_resids: List[int],
data_cache: Optional[menten_gcn.data_management.DecoratorDataCache] =
None, sparse: bool = False, legal_nbrs: Optional[List[int]] = None) → Tu-
ple[numpy.ndarray, numpy.ndarray, numpy.ndarray, List[int]]

This is does the work of creating a graph and representing it as tensors

Parameters

• wrapped_pose (WrappedPose) – Pose to generate data from

• focus_resids (list of ints) – Which resids are the focus residues? We use Rosetta conven-
tions here, so the first residue is resid #1, second is #2, and so one. No skips.

• data_cache (DecoratorDataCache) – See make_data_cache for details. It is very impor-
tant that this cache was created from this pose

• sparse (bool) – This setting will use sparse representations of A and E. X will still have
dimension (N,F) but A will now be a scipy.sparse_matrix and E will have dimension (M,S)
where M is the number of edges

• legal_nbrs (list of ints) – Which resids are allowed to be neighbors? All resids are legal if
this is None

Returns

• X (ndarray) – Node Features

• A (ndarray) – Adjacency Matrix

• E (ndarray) – Edge Feature

• meta (list of int) – Metadata. At the moment this is just a list of resids in the same order
as they are listed in X, A, and E

1.3. Classes 15

menten_gcn, Release 0.3.0

generate_XAE_input_tensors(sparse: bool = False) → Tu-
ple[tensorflow.python.keras.engine.base_layer.Layer, ten-
sorflow.python.keras.engine.base_layer.Layer, tensor-
flow.python.keras.engine.base_layer.Layer]

This is just a safe way to create the input layers for your keras model with confidence that they are the
right shape

Parameters sparse (bool) – If true, returns shapes that work with Spektral’s disjoint mode.
Otherwise we align with Spektral’s batch mode.

Returns

• X_in (Layer) – Node Feature Input

• A_in (Layer) – Adjacency Matrix Input

• E_in (Layer) – Edge Feature Input

• I_in (Layer) – Batch Index Input (sparse mode only)

make_data_cache(wrapped_pose: menten_gcn.wrappers.WrappedPose) →
menten_gcn.data_management.DecoratorDataCache

Data caches save time by re-using tensors for nodes and edges you have aleady calculated. This usually
gives me a 5-10x speedup but your mileage may vary.

Parameters wrapped_pose (WrappedPose) – Each pose needs a different cache. Please give us
the pose that corresponds to this cache

Returns cache (DecoratorDataCache) – A data cache that can be passed to generate_input and
generate_input_for_resid.

1.3.2 Decorators

class menten_gcn.decorators.BareBonesDecorator
This decorator is included in all DataMakers by default. Its goal is to be the starting point upon which everything
else is built. It labels focus nodes and labels edges for residues that are polymer bonded to one another.

• 1 Node Feature

• 1 Edge Feature

calc_edge_features(wrapped_pose, resid1, resid2, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

16 Chapter 1. Contents

menten_gcn, Release 0.3.0

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

calc_node_features(wrapped_pose, resid, dict_cache=None)
This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

describe_node_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

Geometry

class menten_gcn.decorators.CACA_dist(use_nm: bool = False)
Measures distance between the two C-Alpha atoms of each residue

• 0 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use
nanometers.

1.3. Classes 17

menten_gcn, Release 0.3.0

calc_edge_features(wrapped_pose, resid1: int, resid2: int, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

class menten_gcn.decorators.CBCB_dist(use_nm: bool = False)
Measures distance between the two C-Beta atoms of each residue. Note: We will calculate the “ideal ALA”
CB location even if this residue has a CB atom. This may sound silly but it is intended to prevents noise from
different native amino acid types.

• 0 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use
nanometers.

calc_edge_features(wrapped_pose, resid1: int, resid2: int, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

18 Chapter 1. Contents

menten_gcn, Release 0.3.0

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

class menten_gcn.decorators.PhiPsiRadians(sincos: bool = False)
Returns the phi and psi values of each residue position.

• 2-4 Node Features

• 0 Edge Features

Parameters sincos (bool) – Return the sine and cosine of phi and psi instead of just the raw values.

calc_node_features(wrapped_pose, resid, dict_cache=None)
This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

describe_node_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

1.3. Classes 19

menten_gcn, Release 0.3.0

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.ChiAngleDecorator(chi1: bool = True, chi2: bool = True,
chi3: bool = True, chi4: bool = True, sin-
cos: bool = True)

Returns the chi values of each residue position. Ranges from -pi to pi or -1 to 1 if sincos=True.

WARNING: This can behave inconsistantly for proton chis accross modeling frameworks. Rosetta adds hydro-
gens when they are absent from the input file but MDtraj does not. This results in Rosetta calculating a chi value
in some cases that MDtraj skips!

• 0-8 Node Features

• 0 Edge Features

Parameters

• chi1 (bool) – Include chi1’s value

• chi2 (bool) – Include chi2’s value

• chi3 (bool) – Include chi3’s value

• chi4 (bool) – Include chi4’s value

• sincos (bool) – Return the sine and cosine of chi instead of just the raw values

calc_node_features(wrapped_pose, resid, dict_cache=None)
This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

describe_node_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

20 Chapter 1. Contents

menten_gcn, Release 0.3.0

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.trRosettaEdges(sincos: bool = False, use_nm: bool = False)
Use the residue pair geometries used in this paper: https://www.pnas.org/content/117/3/1496/tab-figures-data

• 0 Node Features

• 4-7 Edge Features

Parameters

• sincos (bool) – Return the sine and cosine of phi and psi instead of just the raw values.

• use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

Note: This default value does not match the default of other decorators. This is for the sake
of matching the trRosetta paper.

class menten_gcn.decorators.SimpleBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=False) and CBCB_dist

• 2 Node Features

• 1 Edge Feature

Parameters use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

class menten_gcn.decorators.StandardBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=True) and trRosettaEdges(sincos=False)

• 4 Node Features

• 4 Edge Features

Parameters use_nm (bool) – If true, measure distance in Angstroms. Otherwise use nanometers.

class menten_gcn.decorators.AdvancedBBGeometry(use_nm=False)
Meta-decorator that combines PhiPsiRadians(sincos=True), CACA_dist, and trRosettaEdges(sincos=True)

• 4 Node Features

• 8 Edge Features

Parameters use_nm (bool) – If true, measure all distances in Angstroms. Otherwise use nanome-
ters.

1.3. Classes 21

https://www.pnas.org/content/117/3/1496/tab-figures-data

menten_gcn, Release 0.3.0

Sequence

class menten_gcn.decorators.Sequence
One-hot encode the canonical amino acid identity on each node.

• 20 Node Features

• 0 Edge Features

calc_node_features(wrapped_pose, resid, dict_cache=None)
This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

describe_node_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.DesignableSequence
One-hot encode the canonical amino acid identity on each node, with a 21st value for residues that are not yet
assigned an amino acid identity.

Note: requires you to call WrappedPose.set_designable_resids first

• 21 Node Features

• 0 Edge Features

calc_node_features(wrapped_pose, resid, dict_cache=None)
This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

22 Chapter 1. Contents

menten_gcn, Release 0.3.0

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

describe_node_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.SequenceSeparation(ln: bool = True)
The sequence distance between the two residues (i.e., number of residues between these two residues in sequence
space, plus one). -1.0 if the two residues belong to different chains.

• 0 Node Features

• 1 Edge Feature

Parameters ln (bool) – Report the natural log of the distance instead of the raw count. Does not
apply to -1 values

calc_edge_features(wrapped_pose, resid1, resid2, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

1.3. Classes 23

menten_gcn, Release 0.3.0

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.SameChain
1 if the two residues are part of the same protein chain. Otherwise 0.

• 0 Node Features

• 1 Edge Feature

calc_edge_features(wrapped_pose, resid1, resid2, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

24 Chapter 1. Contents

menten_gcn, Release 0.3.0

Rosetta

class menten_gcn.decorators.RosettaResidueSelectorDecorator(selector, description:
str)

Takes a user-provided residue selctor and labels each residue with a 1 or 0 accordingly.

• 1 Node Feature

• 0 Edge Features

Parameters

• selector (ResidueSelector) – This residue selector will be applied to the Rosetta pose

• description (str) – This is the string that will label this feature in the final summary. Not
technically required but highly recommended

Example:

import menten_gcn as mg
import menten_gcn.decorators as decs
import pyrosetta

pyrosetta.init()

buried = pyrosetta.rosetta.core.select.residue_selector.LayerSelector()
buried.set_layers(True, False, False)
buried_dec = decs.RosettaResidueSelectorDecorator(selector=buried, description='
→˓<Layer select_core="true" />')

data_maker = mg.DataMaker(decorators=[buried_dec], edge_distance_cutoff_A=10.0,
→˓ max_residues=30)
data_maker.summary()

Gives:

Summary:

2 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : 1.0 if the residue is selected by the residue selector, 0.0 otherwise. User
→˓defined definition of the residue selector and how to reproduce it: <Layer
→˓select_core="true" />

1 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise

Note that the additional features are due to the BareBonesDecorator, which is included by default

class menten_gcn.decorators.RosettaResidueSelectorFromXML(xml_str: str,
res_sele_name: str)

Takes a user-provided residue selctor via XML and labels each residue with a 1 or 0 accordingly.

• 1 Node Feature

• 0 Edge Features

Parameters

• xml_str (str) – XML snippet that defines the selector

1.3. Classes 25

menten_gcn, Release 0.3.0

• res_sele_name (str) – The name of the selector within the snippet

Example:

import menten_gcn as mg
import menten_gcn.decorators as decs
import pyrosetta

pyrosetta.init()
xml = '''
<RESIDUE_SELECTORS>
<Layer name="surface" select_surface="true" />
</RESIDUE_SELECTORS>
'''
surface_dec = decs.RosettaResidueSelectorFromXML(xml, "surface")

max_res=30
data_maker = mg.DataMaker(decorators=[surface_dec], edge_distance_cutoff_A=10.
→˓0, max_residues=max_res)
data_maker.summary()

Gives:

Summary:

2 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : 1.0 if the residue is selected by the residue selector, 0.0 otherwise. User
→˓defined definition of the residue selector and how to reproduce it: Took the
→˓residue selector named surface from this XML:
<RESIDUE_SELECTORS>
<Layer name="surface" select_surface="true" />
</RESIDUE_SELECTORS>

1 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise

Note that the additional features are due to the BareBonesDecorator, which is included by default

class menten_gcn.decorators.RosettaJumpDecorator(use_nm: bool = False, rottype: str =
'euler')

Measures the translational and rotational relationships between all residue pairs. This uses internal coordinate
frames so it is agnostic to the global coordinate system. You can move/rotate your protein around and these will
stay the same.

• 0 Node Features

• 6-12 Edge Features

Parameters

• use_nm (bool) – If true (default), measure distance in Angstroms. Otherwise use nanome-
ters.

• rottype (str) – How do you want to represent the rotational degrees of freedom? Options
are “euler” (default), “euler_sincos”, “matrix”, “quat”, “rotvec”, and “rotvec_sincos”.

calc_edge_features(wrapped_pose, resid1, resid2, dict_cache=None)
This does all of the business logic of calculating the values to be added for each edge.

26 Chapter 1. Contents

menten_gcn, Release 0.3.0

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

describe_edge_features()
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

n_edge_features()
How many features will this decorator add to edge tensors (E)?

n_node_features()
How many features will this decorator add to node tensors (X)?

class menten_gcn.decorators.RosettaHBondDecorator(sfxn=None, bb_only: bool = False)
Takes a user-provided residue selctor via XML and labels each residue with a 1 or 0 accordingly.

• 0 Node Features

• 1-5 Edge Features (depending on bb_only)

Parameters

• sfxn (ScoreFunction) – Score function used to calculate hbonds. We will use Rosetta’s
default if this is None

• bb_only (bool) – Only consider backbone-backbone hbonds. Reduces the number of fea-
tures from 5 down to 1

class menten_gcn.decorators.Rosetta_Ref2015_OneBodyEneriges(individual:
bool = False,
score_types=None)

Label each node with its Rosetta one-body energy

• 1 - 20-ish Node Features

1.3. Classes 27

menten_gcn, Release 0.3.0

• 0 Edge Features

Parameters

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

class menten_gcn.decorators.Rosetta_Ref2015_TwoBodyEneriges(individual:
bool = False,
score_types=None)

Label each edge with its Rosetta two-body energy

• 0 Node Features

• 1 - 20-ish Edge Features

Parameters

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

class menten_gcn.decorators.Ref2015Decorator(individual: bool = False,
score_types=None)

Meta-decorator that combines Rosetta_Ref2015_OneBodyEneriges and Rosetta_Ref2015_TwoBodyEneriges

• 1 - 20-ish Node Features

• 1 - 20-ish Edge Features

Parameters

• individual (bool) – If true, list the score for each term individually. Otherwise sum them all
into one value.

• score_types (list of ScoreTypes) – Only use these score types. None (default) includes all
default types. Note - this only applies if individual == True

get_version_name()
Get a unique, versioned name of this decorator for maximal reproducability

28 Chapter 1. Contents

menten_gcn, Release 0.3.0

1.3.3 Pose Wrappers

Want support for more pose representations? Get in touch!

Note that these are both subclasses of the “WrappedPose” class. So if you see “WrappedPose” in the documentation,
that’s this!

class menten_gcn.RosettaPoseWrapper(pose)
This wrapper takes a rosetta pose and requires pyrosetta to be installed

Parameters pose (Pose) – Rosetta pose

class menten_gcn.MDTrajPoseWrapper(mdtraj_trajectory)
This wrapper takes a MDTraj trajectory and requires MDTraj to be installed

Parameters mdtraj_trajectory (Trajectory) – Pose in MDTraj trajectory format

1.4 Examples

1.4.1 Hello World

Let’s start simple and just generate a single set of X, A, and E tensors

With PyRosetta

import pyrosetta
pyrosetta.init()

import menten_gcn as mg
import menten_gcn.decorators as decs

import numpy as np

Pick some decorators to add to your network
decorators = [decs.StandardBBGeometry(), decs.Sequence()]

data_maker = mg.DataMaker(decorators=decorators,
edge_distance_cutoff_A=10.0, # Create edges between all

→˓residues within 10 Angstroms of each other
max_residues=20, # Do not include more than 20

→˓residues total in this network
nbr_distance_cutoff_A=25.0) # Do not include any residue

→˓that is more than 25 Angstroms from the focus residue(s)

data_maker.summary()

pose = pyrosetta.pose_from_pdb("test.pdb")
wrapped_pose = mg.RosettaPoseWrapper(pose)

#picking an arbitrary resid to be interested in
resid_of_interest = 10

X, A, E, resids = data_maker.generate_input_for_resid(wrapped_pose, resid_of_
→˓interest)

(continues on next page)

1.4. Examples 29

menten_gcn, Release 0.3.0

(continued from previous page)

Sanity check:
print("X shape:", X.shape)
print("A shape:", A.shape)
print("E shape:", E.shape)
print("Resids in network:", resids)

With MDTraj

import mdtraj as md

import menten_gcn as mg
import menten_gcn.decorators as decs

import numpy as np

Pick some decorators to add to your network
decorators = [decs.StandardBBGeometry(), decs.Sequence()]

data_maker = mg.DataMaker(decorators=decorators,
edge_distance_cutoff_A=10.0, # Create edges between all

→˓residues within 10 Angstroms of each other
max_residues=20, # Do not include more than 20

→˓residues total in this network
nbr_distance_cutoff_A=25.0) # Do not include any residue

→˓that is more than 25 Angstroms from the focus residue(s)

data_maker.summary()

pose = md.load_pdb("test.pdb")
wrapped_pose = mg.MDTrajPoseWrapper(pose)

#picking an arbitrary resid to be interested in
resid_of_interest = 10

X, A, E, resids = data_maker.generate_input_for_resid(wrapped_pose, resid_of_
→˓interest)

Sanity check:
print("X shape:", X.shape)
print("A shape:", A.shape)
print("E shape:", E.shape)
print("Resids in network:", resids)

1.4.2 Simple Train

This model builds off of the hello world but has some extra complexity and takes us all the way to training

import pyrosetta
pyrosetta.init()

import menten_gcn as mg
import menten_gcn.decorators as decs

(continues on next page)

30 Chapter 1. Contents

menten_gcn, Release 0.3.0

(continued from previous page)

from spektral.layers import *
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

import numpy as np

Pick some decorators to add to your network
decorators = [decs.StandardBBGeometry(), decs.Sequence()]

data_maker = mg.DataMaker(decorators=decorators,
edge_distance_cutoff_A=10.0, # Create edges between all

→˓residues within 10 Angstroms of each other
max_residues=20, # Do not include more than 20

→˓residues total in this network
nbr_distance_cutoff_A=25.0) # Do not include any residue

→˓that is more than 25 Angstroms from the focus residue(s)

data_maker.summary()

Xs = []
As = []
Es = []
outs = []

This part is all very hand-wavy
for pdb in ["test1.pdb", "test2.pdb", "test3.pdb", "test4.pdb", "test5.pdb"]:

pose = pyrosetta.pose_from_pdb(pdb)
wrapped_pose = mg.RosettaPoseWrapper(pose)
cache = data_maker.make_data_cache(wrapped_pose)

for resid in range(1, pose.size() + 1):
X, A, E, resids = data_maker.generate_input_for_resid(wrapped_pose, resid,

→˓data_cache=cache)
Xs.append(X)
As.append(A)
Es.append(E)

for the sake of keeping this simple, let's have this model predict if this
→˓residue is an N-term

if wrapped_pose.resid_is_N_term(resid):
outs.append([1.0,])

else:
outs.append([0.0,])

Okay now we need to define a model.
The data_maker can tell use the right sizes to use.
Better yet, the data_maker can simply create the input layers for us:
X_in, A_in, E_in = data_maker.generate_XAE_input_tensors()

GCN model architectures are tricky
Here's just a very simple one to get us off the ground

ECCConv is called EdgeConditionedConv in older versions of spektral
L1 = ECCConv(30, activation='relu')([X_in, A_in, E_in])
Try this if the first one fails:
#L1 = EdgeConditionedConv(30, activation='relu')([X_in, A_in, E_in])

(continues on next page)

1.4. Examples 31

menten_gcn, Release 0.3.0

(continued from previous page)

L2 = GlobalSumPool()(L1)
L3 = Flatten()(L2)
output = Dense(1, name="out")(L3)

model = Model(inputs=[X_in,A_in,E_in], outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy')
model.summary()

Xs = np.asarray(Xs)
As = np.asarray(As)
Es = np.asarray(Es)
outs = np.asarray(outs)

print(Xs.shape)
print(As.shape)
print(Es.shape)
print(outs.shape)

model.fit(x=[Xs,As,Es], y=outs, batch_size=32, epochs=10, validation_split=0.2)

1.4.3 Sparse Mode

This modification of the “Simple Train” example utilizes Spektral’s disjoint mode to model a sparse representation of
the graph.

This can result in lower memory usage depending on the connectivity of your graph.

The key differences are:

• data_maker.generate_graph_for_resid has sparse=True

• data_maker.generate_XAE_input_tensors has sparse=True and returns a 4th input

– inputs=[X_in,A_in,E_in,I_in] when building the model

• We are making a Spektral Dataset and feeding it into the DisjointLoader

• We are using a Spektral Graph instead of freefloating lists. This change can be done with dense mode too.

– ‘y’ is the output value in spektral graphs

* Please read Spektral’s documentation for options regarding ‘y’

import pyrosetta
pyrosetta.init()

import menten_gcn as mg
import menten_gcn.decorators as decs

from spektral.layers import *
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

import numpy as np

decorators = [decs.StandardBBGeometry(), decs.Sequence()]

(continues on next page)

32 Chapter 1. Contents

menten_gcn, Release 0.3.0

(continued from previous page)

data_maker = mg.DataMaker(decorators=decorators,
edge_distance_cutoff_A=10.0, # Create edges between all

→˓residues within 10 Angstroms of each other
max_residues=20, # Do not include more than 20

→˓residues total in this network
nbr_distance_cutoff_A=25.0) # Do not include any residue

→˓that is more than 25 Angstroms from the focus residue(s)

data_maker.summary()

class MyDataset(spektral.data.dataset.Dataset):
def __init__(self, **kwargs):

self.graphs = []
spektral.data.dataset.Dataset.__init__(self, **kwargs)

def read(self):
return self.graphs

dataset = MyDataset()

for pdb in ["test1.pdb", "test2.pdb", "test3.pdb", "test4.pdb", "test5.pdb"]:

pose = pyrosetta.pose_from_pdb(pdb)
wrapped_pose = mg.RosettaPoseWrapper(pose)
cache = data_maker.make_data_cache(wrapped_pose)

for resid in range(1, pose.size() + 1):
g, resids = data_maker.generate_graph_for_resid(wrapped_pose, resid, data_

→˓cache=cache, sparse=True)

for the sake of keeping this simple, let's have this model predict if this
→˓residue is an N-term

if wrapped_pose.resid_is_N_term(resid):
g.y = [1.0,]

else:
g.y = [0.0,]

dataset.graphs.append(g)

Note we have a 4th input now
X_in, A_in, E_in, I_in = data_maker.generate_XAE_input_tensors(sparse=True)

ECCConv is called EdgeConditionedConv in older versions of spektral
L1 = ECCConv(30, activation='relu')([X_in, A_in, E_in])
Try this if the first one fails:
#L1 = EdgeConditionedConv(30, activation='relu')([X_in, A_in, E_in])

L2 = GlobalSumPool()(L1)
L3 = Flatten()(L2)
output = Dense(1, name="out")(L3)

Make sure to include the 4th input because the DisjointLoader will pass it
model = Model(inputs=[X_in,A_in,E_in,I_in], outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy')
model.summary()

loader = spektral.data.loaders.DisjointLoader(dataset)
(continues on next page)

1.4. Examples 33

menten_gcn, Release 0.3.0

(continued from previous page)

model.fit(loader.load(), steps_per_epoch=loader.steps_per_epoch)
This part can sometimes fail due to tensorflow / numpy versioning.
See the troubleshooting page of our documentation for details

1.4.4 Custom Decorator

We try and make it relatively easy to create your own decorator. All you need to do is inherit a these seven methods
from the base class.

(see full base class description at the bottom)

import menten_gcn as mg
import menten_gcn.decorators as decs

class TestDec(decs.Decorator):

def get_version_name(self):
return "TestDec"

NODES

def n_node_features(self):
return 1

def calc_node_features(self, wrapped_protein, resid, dict_cache=None):
if wrapped_protein.get_name1(resid) == "G":

return [1.0]
else:

return [0.0]

def describe_node_features(self):
return ["1 if the residue is GLY, 0 otherwise"]

EDGES

def n_edge_features(self):
return 2

def calc_edge_features(self, wrapped_protein, resid1, resid2, dict_cache=None):
diff = resid2 - resid1
same = 1.0 if wrapped_protein.get_name1(resid1) == wrapped_protein.get_

→˓name1(resid2) else 0.0
return [diff, same], [-diff, same]

def describe_edge_features(self):
return ["Measures the distance in sequence space between the two residues",

→˓"1 if the two residues have the same amino acid, 0 otherwise"]

decorators=[decs.SimpleBBGeometry(), TestDec(),]
data_maker = mg.DataMaker(decorators=decorators, edge_distance_cutoff_A=10.0, max_
→˓residues=5)
data_maker.summary()

34 Chapter 1. Contents

menten_gcn, Release 0.3.0

Summary:

4 Node Features:
1 : 1 if the node is a focus residue, 0 otherwise
2 : Phi of the given residue, measured in radians. Spans from -pi to pi
3 : Psi of the given residue, measured in radians. Spans from -pi to pi
4 : 1 if the residue is GLY, 0 otherwise

4 Edge Features:
1 : 1.0 if the two residues are polymer-bonded, 0.0 otherwise
2 : Euclidean distance between the two CB atoms of each residue, measured in
→˓Angstroms. In the case of GLY, use an estimate of ALA's CB position
3 : Measures the distance in sequence space between the two residues
4 : 1 if the two residues have the same amino acid, 0 otherwise

class menten_gcn.decorators.Decorator

n_node_features()→ int
How many features will this decorator add to node tensors (X)?

describe_node_features()→ List[str]
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are descriptions of the values to represent this decorator’s contribution to X for any
arbitrary resid.

calc_node_features(wrapped_pose: menten_gcn.wrappers.WrappedPose, resid: int, dict_cache:
Optional[dict] = None)→ List[float]

This does all of the business logic of calculating the values to be added for each node.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid (int) – The residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns features (list) – The length of this list will be the same value as self.n_node_features().
These are the values to represent this decorator’s contribution to X for this resid.

n_edge_features()→ int
How many features will this decorator add to edge tensors (E)?

describe_edge_features()→ List[str]
Returns descriptions of how each value is computed. Our goal is for these descriptions to be relatively
concise but also have enough detail to fully reproduce these calculations.

Returns features (list) – The length of this list will be the same value as self.n_edge_features().
These are descriptions of the values to represent this decorator’s contribution to E for any
arbitrary resid pair.

calc_edge_features(wrapped_pose: menten_gcn.wrappers.WrappedPose, resid1: int, resid2: int,
dict_cache: Optional[dict] = None)→ Tuple[List[float], List[float]]

This does all of the business logic of calculating the values to be added for each edge.

1.4. Examples 35

menten_gcn, Release 0.3.0

This function will never be called in the reverse order (with resid1 and resid2 swapped). Instead, we just
create both edges at once.

Parameters

• wrapped_pose (WrappedPose) – The pose we are currently generating data for

• resid1 (int) – The first residue ID we are currently generating data for

• resid1 (int) – The second residue ID we are currently generating data for

• dict_cache (dict) – The same cache that was populated in “cache_data”. The user might
not have created a cache so don’t assume this is not None. See the RosettaHBondDecorator
for an example of how to use this

Returns

• features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid1 -> resid2.

• inv_features (list) – The length of this list will be the same value as self.n_edge_features().
These are the values to represent this decorator’s contribution to E for the edge going from
resid2 -> resid1.

get_version_name()→ str
Get a unique, versioned name of this decorator for maximal reproducability

cache_data(wrapped_pose: menten_gcn.wrappers.WrappedPose, dict_cache: dict)
Some decorators can save time by precomputing arbitrary data and storing it in this cache. For example,
the RosettaHBondDecorator recomputes and caches all hydrogen bonds so they become a simple lookup
when decorating individual nodes and edges.

Parameters

• wrapped_pose (WrappedPose) – Each pose will be given its own cache. This pose is the
one we are currently caching

• dict_cache (dict) – Destination for your data. Please use a unique key that won’t overlap
with other decorators’.

For reference, here are the methods for the WrappedPose that will be passed into your decorator

class menten_gcn.WrappedPose(designable_resids=None)
This is the base class for all pose representations. The internal Menten GCN code will use API listed here

36 Chapter 1. Contents

menten_gcn, Release 0.3.0

1.5 Technical Overview

docs

tests

support

1.5.1 Documentation

https://menten-gcn.readthedocs.io/

1.5.2 Installation

pip install menten-gcn

You can also install the in-development version with:

pip install https://github.com/MentenAI/menten_gcn/archive/main.zip

1.5.3 Development

To run all the tests locally run:

tox

1.6 Troubleshooting

1.6.1 Sparse Mode

1. Cannot convert a symbolic Tensor to a numpy array

NotImplementedError: Cannot convert a symbolic Tensor (gradient_tape/model_1/crystal_
→˓conv/sub:0) to a numpy array. This error may indicate that you're trying to pass a
→˓Tensor to a NumPy call, which is not supported

1.5. Technical Overview 37

https://readthedocs.org/projects/menten_gcn
https://travis-ci.org/MentenAI/menten_gcn
https://github.com/MentenAI/menten_gcn/
https://github.com/MentenAI/menten_gcn/
https://github.com/MentenAI/menten_gcn/blob/main/LICENSE
https://menten-gcn.readthedocs.io/

menten_gcn, Release 0.3.0

This is a tough one to debug because it is often thrown from deep inside keras. It appears to be solved by updating
versions of python, numpy, and/or tensorflow. For example, we might see this pop up in python 3.7 but not 3.6 or
3.8. This stack overflow question also suggests that the numpy/tensorflow relationship could be fixed by downgrading
numpy below 1.2.

1.6.2 Versioning

1. No python 3.9 support

We are currently stuck between versions 3.6 and 3.8 of python. 3.5 has reached “end of life” and tensorflow still does
not support 3.9. Tensorflow is still listed as a required dependency for Menten GCN but we are working on changing
that. Stay tuned!

1.7 Authors

• Menten AI, Inc. - https://menten.ai

– Created and maintained by Jack Maguire

1.8 Indices and tables

• genindex

• modindex

• search

38 Chapter 1. Contents

https://stackoverflow.com/questions/58479556/notimplementederror-cannot-convert-a-symbolic-tensor-2nd-target0-to-a-numpy
https://menten.ai

INDEX

A
AdvancedBBGeometry (class in

menten_gcn.decorators), 7, 21

B
BareBonesDecorator (class in

menten_gcn.decorators), 16

C
CACA_dist (class in menten_gcn.decorators), 6, 17
cache_data() (menten_gcn.decorators.Decorator

method), 36
calc_edge_features()

(menten_gcn.decorators.BareBonesDecorator
method), 16

calc_edge_features()
(menten_gcn.decorators.CACA_dist method),
17

calc_edge_features()
(menten_gcn.decorators.CBCB_dist method),
18

calc_edge_features()
(menten_gcn.decorators.Decorator method),
35

calc_edge_features()
(menten_gcn.decorators.RosettaJumpDecorator
method), 26

calc_edge_features()
(menten_gcn.decorators.SameChain method),
24

calc_edge_features()
(menten_gcn.decorators.SequenceSeparation
method), 23

calc_node_features()
(menten_gcn.decorators.BareBonesDecorator
method), 17

calc_node_features()
(menten_gcn.decorators.ChiAngleDecorator
method), 20

calc_node_features()
(menten_gcn.decorators.Decorator method),
35

calc_node_features()
(menten_gcn.decorators.DesignableSequence
method), 22

calc_node_features()
(menten_gcn.decorators.PhiPsiRadians
method), 19

calc_node_features()
(menten_gcn.decorators.Sequence method), 22

CBCB_dist (class in menten_gcn.decorators), 6, 18
ChiAngleDecorator (class in

menten_gcn.decorators), 6, 20

D
DataMaker (class in menten_gcn), 13
Decorator (class in menten_gcn.decorators), 35
describe_edge_features()

(menten_gcn.decorators.BareBonesDecorator
method), 17

describe_edge_features()
(menten_gcn.decorators.CACA_dist method),
18

describe_edge_features()
(menten_gcn.decorators.CBCB_dist method),
19

describe_edge_features()
(menten_gcn.decorators.Decorator method),
35

describe_edge_features()
(menten_gcn.decorators.RosettaJumpDecorator
method), 27

describe_edge_features()
(menten_gcn.decorators.SameChain method),
24

describe_edge_features()
(menten_gcn.decorators.SequenceSeparation
method), 23

describe_node_features()
(menten_gcn.decorators.BareBonesDecorator
method), 17

describe_node_features()
(menten_gcn.decorators.ChiAngleDecorator
method), 20

39

menten_gcn, Release 0.3.0

describe_node_features()
(menten_gcn.decorators.Decorator method),
35

describe_node_features()
(menten_gcn.decorators.DesignableSequence
method), 23

describe_node_features()
(menten_gcn.decorators.PhiPsiRadians
method), 19

describe_node_features()
(menten_gcn.decorators.Sequence method), 22

DesignableSequence (class in
menten_gcn.decorators), 8, 22

G
generate_input() (menten_gcn.DataMaker

method), 15
generate_input_for_resid()

(menten_gcn.DataMaker method), 14
generate_XAE_input_tensors()

(menten_gcn.DataMaker method), 15
get_N_F_S() (menten_gcn.DataMaker method), 14
get_version_name()

(menten_gcn.decorators.BareBonesDecorator
method), 17

get_version_name()
(menten_gcn.decorators.CACA_dist method),
18

get_version_name()
(menten_gcn.decorators.CBCB_dist method),
19

get_version_name()
(menten_gcn.decorators.ChiAngleDecorator
method), 20

get_version_name()
(menten_gcn.decorators.Decorator method),
36

get_version_name()
(menten_gcn.decorators.DesignableSequence
method), 23

get_version_name()
(menten_gcn.decorators.PhiPsiRadians
method), 20

get_version_name()
(menten_gcn.decorators.Ref2015Decorator
method), 28

get_version_name()
(menten_gcn.decorators.Rosetta_Ref2015_OneBodyEneriges
method), 28

get_version_name()
(menten_gcn.decorators.Rosetta_Ref2015_TwoBodyEneriges
method), 28

get_version_name()
(menten_gcn.decorators.RosettaJumpDecorator

method), 27
get_version_name()

(menten_gcn.decorators.SameChain method),
24

get_version_name()
(menten_gcn.decorators.Sequence method), 22

get_version_name()
(menten_gcn.decorators.SequenceSeparation
method), 24

M
make_data_cache() (menten_gcn.DataMaker

method), 16
MDTrajPoseWrapper (class in menten_gcn), 29

N
n_edge_features()

(menten_gcn.decorators.BareBonesDecorator
method), 17

n_edge_features()
(menten_gcn.decorators.CACA_dist method),
18

n_edge_features()
(menten_gcn.decorators.CBCB_dist method),
19

n_edge_features()
(menten_gcn.decorators.ChiAngleDecorator
method), 20

n_edge_features()
(menten_gcn.decorators.Decorator method),
35

n_edge_features()
(menten_gcn.decorators.DesignableSequence
method), 23

n_edge_features()
(menten_gcn.decorators.RosettaJumpDecorator
method), 27

n_edge_features()
(menten_gcn.decorators.SameChain method),
24

n_edge_features()
(menten_gcn.decorators.Sequence method), 22

n_edge_features()
(menten_gcn.decorators.SequenceSeparation
method), 24

n_node_features()
(menten_gcn.decorators.BareBonesDecorator
method), 17

n_node_features()
(menten_gcn.decorators.ChiAngleDecorator
method), 20

n_node_features()
(menten_gcn.decorators.Decorator method),
35

40 Index

menten_gcn, Release 0.3.0

n_node_features()
(menten_gcn.decorators.DesignableSequence
method), 23

n_node_features()
(menten_gcn.decorators.PhiPsiRadians
method), 20

n_node_features()
(menten_gcn.decorators.RosettaJumpDecorator
method), 27

n_node_features()
(menten_gcn.decorators.SameChain method),
24

n_node_features()
(menten_gcn.decorators.Sequence method), 22

n_node_features()
(menten_gcn.decorators.SequenceSeparation
method), 24

P
PhiPsiRadians (class in menten_gcn.decorators), 6,

19

R
Ref2015Decorator (class in

menten_gcn.decorators), 11, 28
Rosetta_Ref2015_OneBodyEneriges (class in

menten_gcn.decorators), 10, 27
Rosetta_Ref2015_TwoBodyEneriges (class in

menten_gcn.decorators), 11, 28
RosettaHBondDecorator (class in

menten_gcn.decorators), 10, 27
RosettaJumpDecorator (class in

menten_gcn.decorators), 10, 26
RosettaPoseWrapper (class in menten_gcn), 29
RosettaResidueSelectorDecorator (class in

menten_gcn.decorators), 8, 25
RosettaResidueSelectorFromXML (class in

menten_gcn.decorators), 9, 25

S
SameChain (class in menten_gcn.decorators), 8, 24
Sequence (class in menten_gcn.decorators), 8, 22
SequenceSeparation (class in

menten_gcn.decorators), 8, 23
SimpleBBGeometry (class in

menten_gcn.decorators), 7, 21
StandardBBGeometry (class in

menten_gcn.decorators), 7, 21
summary() (menten_gcn.DataMaker method), 13

T
trRosettaEdges (class in menten_gcn.decorators),

6, 21

W
WrappedPose (class in menten_gcn), 36

Index 41

	Contents
	Overview
	Graph Layout
	Graph Tensors
	Usage

	Decorator Menu
	Geometry
	Sequence
	Rosetta

	Classes
	DataMaker
	Decorators
	Pose Wrappers

	Examples
	Hello World
	Simple Train
	Sparse Mode
	Custom Decorator

	Technical Overview
	Documentation
	Installation
	Development

	Troubleshooting
	Sparse Mode
	Versioning

	Authors
	Indices and tables

	Index

